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Estimation of Strength of the “Three-Electron
o Bond” of a Hexaalkylhydrazine M3nocation Radical
Sir:

One-electron reduction of tricyclic hexaalkylhydrazine di-
cations 12* ! and 22+ 2 has been shown to give very long-lived
red radical cations which appear to be best described as having
“three-electron o bonds”, i.e., with one electron in an orbital
which is largely ¢* N-N in character. We report here that the
less constrained dication 32+ 3 gives a similar but much shorter
lived species, whose lifetime allows estimation of the strength
of the three electron bond for this molecule.

‘2"' 22+ 324

Solvated electrons were produced by pulse radiolysis* of
N,-saturated water containing 0.1 M tert-butyl alcohol, to
scavenge the hydroxyl radicals produced, and 1-2 X 1074 M|
dication. Decay of optical absorption of eaq~ was monitored
at 600 nm and was accompanied by growth of monocation
radical 1+.-3*. absorption. All three dications react rapidly
with esq~ (see Table I), although the rate constant for 12+ re-
duction is significantly lower than that for the other two. A
larger geometry change upon accepting an electron is suggested
for system 1 by the 14.7-G nitrogen splitting constant of 1*-
(indicating nearly planar nitrogens) than for 2, because a(N)
of 2+ is 34.4 G (indicating nearly tetrahedral nitrogens).!+?
Interestingly, these dications are not reduced by isopropyl al-
cohol radical (-CMe,OH, generated by pulse radiolysis of
N,O-saturated water containing 10! M isopropyl alcohol),
despite the fact that the electron transfer is quite exothermic.®
A substantial steric effect on the rate of electron transfer ap-
pears to be involved. All three radical cations have very similar
absorption spectra (see Table I). Those observed for 1t and
2%. agree well with data obtained by conventional methods,
although a significantly higher € value was observed for 1*-in
this work. We presume that partial decomposition had oc-
curred in the samples of 1* previously prepared.!

Although 1% and 2*. are known to be long lived, the optical
absorptions of these species were found to disappear partially
in a rapid process. This is indicated by the optical spectra be-
fore and after this rapid decay which are identical except for
intensity. The decay process essentially followed second-order
kinetics. These facts would indicate that the radical cations
produced react with another transient produced by the pulse
which we suggest to be the -CH,CMe,OH radical. This latter
species is formed by the reaction of OH- radicals and H- atoms
with tert-butyl alcohol and in a yield exceeding that of the
radical cation only by 20-25%. The only partial decay of the
radical cation absorption is explained by the fact that the
.CH,CMe,0OH + 1% (2*. or 3*.) reaction (k; ~2-3 X 107
M~1s~1) has to compete with the bimolecular decay of two
-CH,CMe,OH radicals (2k, = 1.3 X 109 M~15~1),

Because 2*- cannot be reacting by addition to the weak three
electron & bond as this would require a nitrogen inversion
which is far too costly in energy to be consistent with the rapid

Table I. Rate Constants for Reaction of Hexaalkylhydrazine
Dications with e,q~, and Absorption Maxima of the Products

ka, M7t s71 for ey~

cation radical, Amay,

starting compound + dication nm (e, M~ em—1)
12+ 1.4 X 1010 480 (2600)
22+ 5.0 X 1010 470 (4500)
32+ 4.9 x 1010 470 (4600)
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reaction observed, an a-hydrogen abstraction is presumed to
be occurring in at least this case. As expected, once the teri-
butyl alcohol radical is consumed, the optical signals for 1*.
and 2*. are completely stable for over 10 s (nonflowing con-
ditions, the slowest time scale that could be employet using the
pulse radiolysis equipment). In contrast, the 3*- optical signal
decreases by a relatively slow first-order process after the initial
fast reaction with «CH,CMe,OH is completed. The observed
rate constant for 3%. disappearance is 135 £ 15571 at 25 °C,
pH independent between 2.7 and 5.3 (the lower limit is imposed
by the decreased yield of 3*- when the e,q~ + H* reaction
consumes too great a fraction of the electrons produced, and
the upper limit by decomposition of 32+). We suggest that this
uncatalyzed first-order decomposition of 3*. is caused by
thermal cleavage of the three-electron o bond. This cleavage
allows the nitrogens to move apart until they no longer interact
significantly, and the acidic amine radical cation® and basic
free amino group produced will undergo very rapid, irreversible
net proton transfer at the pH employed; cleavage of the
R3N-NR;* bond should be irreversible. The 5-ms observed
half-life corresponds to AG¥ of 14.5 kcal/mol using the Erying
equation, which we suggest is an experimental measure of the
strength of the three-electron o bond of 3*.. The tricyclic
radical cations 1% and 2% are structurally prevented from
cleaving the N-N bond and have solution lifetimes of hours
and months, respectively.!2
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Synthesis of a Class of Complexes Containing
Tungsten-Tungsten Quadruple Bonds

Sir:
Despite the large number of complexes of Mo containing
quadruple metal-metal bonds, few are known for W.! This

probably is due largely to the fact that a W analogue of
Mo3(OACc)4 (the major starting material for preparing com-
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plexes containing quadruple bonds) has not yet been prepared.?
We have been attempting to systematize the chemistry of
tungsten halides and have found that a class of complexes with
the formula W,Cl4L4 (L. = a phosphine ligand) can be pre-
pared readily, either by reducing [WCls], with sodium
amalgam in the presence of L or by pyrolyzing monomeric
W(II) complexes. The former demonstrates that, once a
metal-metal bond of order greater than one is present, it will
quite likely survive upon reducing the metal to give a bond of
higher order.?

Phosphines react fairly slowly with WCly suspended in THF
to yield WClyL, (x = 2 or 3) complexes. However, when 2
equiv of sodium amalgam (0.4%) is added to a stirred mixture
of WCly and PBuj in THF at —20 °C and the mixture is
warmed to room temperature, WCly is consumed and the so-
lution turns blue-green. W,Cl4(PBu3)4 can be isolated in high
yield after filtering the mixture through Celite. Analogous
green to blue-green complexes (1) containing PMej3, PMe,Ph,
or PMePhj, can be obtained similarly in 60-80% yield (eq |).
We have also used this method to prepare more simply and
directly one member [blue Mo,Cls(PBus)4] of the well-known
class of analogous molybdenum complexes.?

THF
WCls + 2Na/Hg + 21 —> W,ClyL, (1) (1)
L = PMes, PMe,Ph, PMePh,, or PBus

The reaction fails to give W,Cl4(L-L), (2, L-L = dmpe or
diphos) directly. These must be prepared by displacing PBu;
from W,Cl4(PBu3)4 in toluene at 80 °C. Sparingly soluble,
brown W,Cly(diphos), or green W,Cly(dmpe), crystallize
from the reaction mixture in 60 and 95% yields, respectively.
Actually brown W,Cls(diphos); contains ~10% green crys-
talline form. (Two forms of Mo,Cls(diphos); were also iso-
lated.?)

The formulations of 1 and 2 are based on elemental analy-
ses® and the following data (cf. the analogous Mo com-
plexes*3). All are air stable in the solid state and only moder-
ately sensitive in solution. A cryoscopic molecular weight de-
termination for W,Cls(PBus)4 (caled 1317; found 1320) and
parent peaks in the mass spectra of W,Cly(PMe;)s and -
W,Cls(dmpe); show that they are dimers. The *'P and 'l
NMR spectra are virtually identical with those reported for
the Mo,ClsL4 complexes except for the presence of '*5W
satellites in the 3'P spectra.” A Raman spectrum® of
W,Cl4(PBus), revealed an intense peak at 260 £ 10 ¢m™!
which we tentatively assign as the tungsten-tungsten
stretch.

If only 1 equiv of sodium amalgam is used, a mixture of
WCls and PMe; yields a red solution from which red, crys-
talline W,Clg(PMes)4 (3a) can be isolated in 75% yield. We
believe that 3a has a structure analogous to the known
W,ClgPy4 (3b)° based on the fact that its '"H NMR spectrum
shows two types of phosphine ligands. The reduction of 3a with
1 more equiv of sodium amalgam/W yields W,Cly(PMez)s
in 80% yield.

L Ci
cl \V!V/;l-\\l\f/L
a” | Da” | L
L Ct
3a, L = PMe,
b, L =Py
c, L =THF

If phosphine is absent, 1 equiv of sodium amalgam reduces
WCly to give a greenish yellow solution in which greenish
yellow crystals form on addition of pentane. Since the 'H
NMR spectrum of this complex shows two types of THF li-
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